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Clear-sky Aerosol Radiative
Forcing over North Indian Ocean 

-7.0 ± 1 W m-2

-23 ± 2 W m-2

+16.0 ± 2 W m-2

Source: Ramanathan,… Ogren,… et al., J. Geophys. Res., 2001
average for Jan - March, 1999; 0 - 20°N; τa = 0.3

energy loss at top of atmosphere 
due to backscattering of sunlight 
to space

heating of atmosphere due to 
aerosol absorption of sunlight

cooling of surface due to aerosol 
absorption and backscattering
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NOAA Aerosol Monitoring Program
• What is the climate forcing by anthropogenic 

aerosols?
– What are the means, variabilities, and trends of the 

climate-forcing properties of different types of 
aerosols?

– What are the factors that control these properties?

Objective
• Obtain measurements of aerosol properties that 

will allow evaluation of the anthropogenic climate 
forcing by aerosols, when combined with 
chemical transport models, radiative transfer 
models, and global satellite observations.
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Strategy for Evaluating Aerosol Forcing

• Systematic integration of global satellite
observations and global chemical 
transport models will provide an internally-
consistent diagnosis of the aerosol forcing 
of climate, with a predictive capability.

• In-situ observations, like those from NOAA 
monitoring stations, provide the glue that 
holds the satellites and models together.

• The in-situ data ensure that the integrated 
satellite+model results agree for the right 
reasons.
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What Do We Measure?
• Primary quantities measured

– light scattering coefficient (σsp)
– light absorption coefficient (σap)

aerosol cross-sectional area for absorption per unit volume of 
air (m2 m-3,  10-6 m-1 = 1 Mm-1)

– particle number concentration
– chemical composition (mass, major ions)

• Derived properties
– single-scattering albedo (scattering vs. absorption)
– hygroscopic growth factor (RH-dependence)
– submicron scattering fraction (size dependence)
– hemispheric backscatter fraction (angular dep.)
– Ångström exponent (wavelength dependence)
– radiative forcing efficiency
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Black Carbon and Light Absorption
• Optical methods for 

determining BC really 
measure σap (PSAP, 
aethalometer, MAAP, 
integrating sphere, 
photoacoustic, …) 

• BC = σap x fap / MAE
– fap = fraction of light 

absorption due to BC
– MAE =  mass absorption 

efficiency of BC (m2 g-1)
• Climate forcing 

calculations require σap

• Empirical relationships, 
like the one show above 
for the Indian Ocean, are 
required to determine BC 
from σap (WMO/GAW 
report #153)

MAE / fap ≈ 9.5 m2 g-1
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Aerosol Radiative Forcing and SSA
• Single-scattering albedo is the fraction of 

aerosol light extinction caused by 
scattering, SSA = σsp / ( σsp+ σap ) 

• The sign of the aerosol forcing at the top 
of the atmosphere (TOA) depends on 
surface albedo, aerosol backscatter 
fraction, and SSA.

• Absorbing aerosols generally cause 
negative TOA forcing over dark surfaces 
(oceans) and positive TOA forcing over 
bright surfaces (clouds, snow, ice)
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aerosol single-
scattering albedo

average aerosol
up-scatter fraction
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Variability of Light Absorption Coefficient
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Variability of Single-scattering Albedo
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Variability of Backscattering Fraction
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Variability of Radiative Forcing Efficiency

RFE = ∆F / δ (W m-2 per unit AOD).  Upscatter fraction is 
estimated using measured backscatter fraction.
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Single-scattering Albedo and Backscatter 
Fraction are Both Important to Variability of RFE
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Seasonal Cycles of σap at BRW and MLO

Pollution aerosols 
from Eurasia reach 
Barrow frequently 
during the winter 
(Arctic Haze)

Pollution and dust 
aerosols  from Asia 
reach Mauna Loa 
frequently during 
the spring months.
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- DOE/ARM funding for Oklahoma project, >500 flights since 3/2000
- NOAA funding starting 2003 to begin sampling over another site 
with an enhanced payload.  Start flying mid 2005.

NOAA/CMDL In-situ Aerosol Profiling

Port view of rack

Sample Inlet

• Information on aerosol properties 
aloft is scarce, satellites and 
surface stations give limited data.

• Light airplanes can be used to 
monitor vertical profiles of key 
aerosol properties at modest cost.

• Objectives:
– obtain aerosol climatology aloft
– determine relevance of surface climatology

• Summary: Cessna 172 (4-seat), 
profiles to 3.7 km asl, aerosol light 
scattering and absorption, 
automated operation.
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Values are adjusted to STP and at RH < 40%, for λ = 0.55 µm and Dp < 1 µm, 
from 490 flights (3/2000 - 10/2004).  All 9 levels were sampled on 442 flights.

Vertical Profiles of σap and ω at SGP
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Notes:  Results are for 324 profiles from March, 2000 – March, 
2003 over the DOE/ARM site.  Aerosol radiative properties reported 
at 550 nm wavelength, RH<40%, and particle diameter below 1 µm.
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Notes:  Results are for 324 profiles from March, 2000 – March, 2003 over 
the DOE/ARM site.  Aerosol radiative properties reported at 550 nm 
wavelength, RH<40%, and particle diameter below 1 µm.
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Fractional backscattering and absorption 
decrease as pollution increases
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Effects of Cloud Scavenging on 
Aerosol Radiative Properties

• Aerosol light scattering is dominated by particles 
that are readily-scavenged by clouds, such as 
sulfates and water-soluble organics

• Aerosol light absorption is dominated by less 
readily-scavenged particles, such as graphitic 
carbon (soot)

• Cloud droplets are therefore enriched in light 
scattering particles relative to light absorbing 
particles

• When precipitation falls, it removes more of the 
light scattering particles than the light absorbing 
ones

• Cloud scavenging therefore systematically 
decreases aerosol single-scattering albedo
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Aerosol SSA during two cloud events

A clear decrease in single-scattering albedo is evident in clouds where the 
scavenging is not complete, as observed in these two events on Mt. 
Åreskutan, Sweden. 
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Effect of fog on aerosol radiative properties in Nova Scotia

Onset of fog causes strong decrease in light scattering (not shown), 
modest decrease in light absorption, increase in back-scatter fraction, 
and decrease in single scattering albedo.   Chebogue Point, July 4, 2004.
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Evaluating Climate Forcing by BC Aerosols
• Atmospheric cycle of black cargon

– sources, atmospheric processes, sinks, and mass 
concentrations

• Aerosol radiative properties
– BC mass absorption efficiency
– optical depth, single-scattering albedo, upscatter

fraction
• Observations of aerosol climate forcing properties 

reveal pronounced and systematic differences for 
different aerosol types and loadings.

• Variations in single-scattering albedo and 
backscatter fraction both contribute to variations in 
aerosol radiative forcing efficiency
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